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1. Let the coefficients ql(t) and 9*(t) of the equation 

s”$ql (t) cr. + q2 (t) z = 0 (1.1) 

be continuous periodic functions of the real period w. It is known that 

where h 
(1.1). +heydatZ 

The equation 

w 

-& 
s 

q1 (t) dt = - ()il $- h3) (1.2) 
0 

are characteristic exponents of solutions of the equation 

real numbers. 

(1.2) gives an example of a function F of the coeffi- 
cients of the equation (1.11, namely, FE vI which has the following pro- 

perties: its mean value over the period is a function of the character- 

istic exponents h, and X, whose structure does not depend on o1 as a 

function of time. 

The existence of another similar function with a mean value different 

fromhI + h, would permit the evaluation of X, and X, by means of a finite 

number of standard operations on the coefficients of the equation inde- 

pendently of the particular form the latter might have. 

One can show, however, that such a function does not exist. 

2. We shall make the statement of the problem more precise. Let us 

assume that the coefficients qI(t) and q,(t) are continuous n-times 

differentiable functions and such that A, f A,. Then the independent so- 

lutions of the equation (1.1) can be represented in the form (2) 
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xi = ‘pi (t, ehif (2-l) 
Here, and in what follows, i = 1, 2; 4Si(t) is a periodic function of 

period o. 

From the existence and uniqueness theorem for the solutions of equation 

(1.1) and of the equations obtainable form (1.1) through n repeated diffe- 

rentiations, it follows that the functions q!q(t) and their derivatives of 

order up to n + 2 are continuous. 

We introduce the notation 

dwp, 
q$“’ zz - 

dtx ’ 
f+(O) = Qi (” :- 0, 1, . . ) n) 

From the equations, which result from the substitution of each of the 

solutions (2.1) into equation (1.11, we obtain 

Qi E Ui,$91C2) -1. Ui,y,(2) + bio 

‘pa 
41 = - ;i- , Q. = ‘p1, a 21 = 

(Pa(l) + LqJ2 
A , ‘22 = 

w(1) + h% 
A A 

A = q+(‘)yz - y&l) -I-- (h, - &,) yly2, 
abio a+, 

--=-Q-O 
aTI@) (2.2) 

From these relations it follows that 

qiw z= Q,cp,(x+z) -1. ~i2cp,cx+2, _I_ /Ii; 
(2.3) 

where the bix are continuous and depend on q$ (x+2), ~2(x12). 

We shall consider all possible differentiable functions F, of the in- 

dependent* variables t, c$~, . . . . c$~("+ '1 periodic relative to the ex- 

plicitly appearing variable t: 

F” (t + 0, A,, h,, ‘91, . . . ) yp) == F, (t, h], h,, ‘PI, . . . , cpp2)) 

We shall subject these functions to the following conditions. (1) 'Ihe 

mean value of F, over the period is a function c,(X1, X ) of the charac- 

teristic exponents whose form depends on the form of qSi t) as a function f 

* It is assumed that the variable t, entering explicitly in FV, cannot 

be expressed in terms of integrals 

s G [Qi"(t)l dt 
0 

where G is an arbitrary integrable, nonconstant function of the vari- 

ables $i(z). 
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of t: 

~IJ~@‘+~) (t)] dt = c, (h,, h2) (2.4) 
0 

(2) 'lhe arguments of the function FV can be grouped so 
(2.3) for arbitrary +i (x1 the following identity holds 

Fv (t, h,, h,, cpl, . . . , cp,,(*+z)) E F,’ (t, ql, . . . , 

‘Ihe F,‘. do not depend explicitly on hi and c$~("). 

that in view of 

QP') (2.5) 

lhe functions that satisfy conditions (2.4) and (2.5) we include in 

the class {FI.‘Ihey are periodic in t and are such that the integral 

;i Fft, 91(t), . . 0, qP (t)l dt 

0 

is a function of the characteristic exponents whose structure depends 

only on the choice of F. The arguments t, qi (x) of F are independent. The 

following theorem holds. 

Theorem. If the n-times differentiable periodic functions are not all 

identical constants, and are such that A, # A,, then for an arbitrary 

function F of the class 1 F) the following identity is valid 

+f Fit, qr(t), . . . , qP (t)l dt = PI (b i- A,) + i* 

0 

where /.L~ and TV are constants independent of Xi. 

It follows from the theorem that the characteristic exponents of the 

solution of the equation (1.11 cannot be expressed in terms of a finite 

relationship between the mean values of the functions of the class IF]. 

Below we derive two lemmas with the aid of which the conditions (2.4) 

and (2.5) (that restrict the class of functions F,) are formulated in a 

manner convenient for the proof of the theorem. 

Lemma 1. In order that the function F, satisfy the condition (2.4) it 

is necessary and sufficient that the following equation be satisfied 
identically in the c$~("): 

Y n+2(i)(Fv) +--&$)+. .i -k (-l)““d~2ij---$+ =0 (2.6) 
’ * 

Proof. Without loss of generality we assume that w= 2s. The functions 
qQ%) admit expansions into convergent Fourier series: 

qi = aOCi) + i (aJijcoskt -1 b,,!') sin fit) 

I;=1 
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will not depend on the form of the function q5i (x) if, and only if, 

We have 

Integrating by parts the appropriate numLer of times, and taking into 

account the periodicity of the function F,, we obtain 

Furthermore, 
31: 

f?J 1 
aa,(ii = irr s 

yPn$) (Fy) rlt = 0 

0 

‘Ihis establishes the lemma. 

We note that the content of the proved lemna does not coincide with 

the content of a very similar variational problem. Therefore the validity 

of this lernna is not a consequence of any fact known in the calculus of 

variation. 

Consequence. It is not difficult to establish that equation (2.6) is 

satisfied by any function F,, representaLle in the form 

J-%(& y1, * * * , r&P-q = -g- fft, yi, . . . , qJp+q 

where f is an arbitrary differentiable function periodic in t. 

Lemma 2. let rm be the rank of the functional determinant 
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’ 2 g&-&j 
89, 89, 

;11 = - -... f91 _ 
avl afb a’p2(j+2) 1 
. . . . . . . . _ _ . . . 

apn(*) aq2@) aq2(n) 
arpl apz”’ arp2W+2) 

l'he function F, will satisfy condition (2.5) if and only if rn\< 26~ + 1) 

for arbitrary di("). 

'Ihe validity of the lemna follows from a known theorem in analysis 

[31. 

We note that this lema does not have a local character by the very 

nature of the condition (2.5) which must hold everywhere. 

3. We now proceed with the proof of the theorem. 

We shall first show that the function F, which is subject to condition 

(2.4) must be representable in the form 

with 
F, = zLnrD1(n+2) $ u,cpz(n+2) $- A, (3.1) 

au, %I autl au, a‘% 
-jpq=---- ti ap,(n+l) ’ ap,(n+2) =‘=apo= apinT 2) 

0 (3.2) 
1 2 

Indeed, since the function F, contains by hypothesis only derivatives 

of order not higher than n + 2, the coefficients of the higher order de- 
rivatives in the operator (2.6) must vanish. 

For the coefficients of c$~~("'+~) we have 

Whence, 

a2Fi aYgi(n+2)a (P3 x11+2) = 0 (j = 1, 2) 

F, = u,cp,(n+@ + v,~~(~+z) _I- A, 

(3.3) 

wherein the second condition (3.2) is satisfied. 

Ihe terms containing derivatives of order 2(n + 2) - 1 are generated 

by the last two terms of the operator (2.4): 
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Here, 

Zi = 1 
u, (i=1) 

c n (i = 2) 

lhe coefficient of the first power of the function +I (2n+7) is 

Setting i = 2 in this expression we obtain equation (3.2). 

For the sake of explicitness let us restrict ourselves to the case 

when n = 1. It is the simplest case but contains all the characteristics 

of the general one. 

We note first of all that the determinant 

D=) ::: 1:: / 
zrz A-1 :-I c- o&h) t q’ Zl -1 

I 1 =A’ 52 

is bounded and different from zero because of the linear independence and 

continuity of the solutions of equation (1.1). 

We require that the functions F,, also satisfy the condition (2.5). 

According to lemna 2, with n = 1, we must have rn _( 4. Hence one can find 

at least one set of values po, pl, . . . . p4, not all zero, such that 

These equations must be satisfied identically in +i (i). We note that 

p0 f 0, for otherwise there would exist a linear relation between the 

rows of the matrix M. Rut this is impossible since the fourth-order de- 

terminant of the matrix hl, standing in the lower right-hand corner, is 

different from zero: 

a (R, qn, qlcl), ~~(~9 1 aa az3 0 0 
a ('pl(2), pz(z), (pl(3), (p3(3)) z . . all a12 

Thus, without loss of generality, pLo = 1. 

= D2#0 

Taking into account the linearity of the functions F,,, qI, . . . . q2 (1) 

relative to the gi(j), and making use of the condition D f 0,we can easily 

prove by differentiation equation! (3.4) with respect to $i(9) that 
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where p 
‘P 

and pl'.are quantities independent of c$~('). 

coe~~;it;~i~; th~j;alues ~~.and.~~ into (3.4), equating to zero the 

and taking Into account the equations (2.3) and 

(3.11, we obtain 

g+ u aa,, _I_ p 

’ 3 %I 
a(l,, _;_ ,l 

aql aqo 
4 a@?1 L 11 ap1 ---- L 

; u*l -2 Z 0 
a$& 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

au1 aal 
- -1- p3 
&p2(2) 

- + !k4 
a59 

aT2(2) 
%Z- + Pll Qj- 
aq2(2) 

-I- IA21 $=o 

(3.5) 

z+P3a$+p4% + p12%+ p22g =o 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

a+f2 

$I + p3 ;;y2, + CL4 $;, + i*12+$7 + t*22 aq2(2) = 0 

(3.6) 

u1+ w11+ p&2, = 0, ‘1 + [*3%2 +IL4a22 = 0 (3.7) 

?he system of equations (3.7) is obtained directly as a statement of 
the fact that the elements of the last two columns of the matrix M are 

linearly independent. 

The group of equations, obtainable from (3.4) by equating to zero the 
sum of the terms independent of +i(s), has not been written out. Elimin- 

ating u1 from the system (3.5), and u1 from the system (3.6), we obtain 

with the aid of (3.7) the next set of equations 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
ap3 

- '11 aq2(2) --u21~+pll~ + P21 
ag2 ___. 

- - 
aq2(2) 

ap3 
- a12acpl -u22~+p,2g-+p,2~=o 

. . . . . . . . . ..a.)............... 

- a12 
ap3 ah 

a'p2(2)-u22- aqz(2) -I- P12$ + [J22- = 
ag2 o 

ap2t2) 
From this follows the existence of two identities in q$, 

q(PL7> P4, (71, a2’ t) = 0, X&’ P4’ 91, 92' r) = 0 
. ..) C&(2): 

. 
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Furthermore, for arbitrary finite qi and t, 

'lhe equations Xi = 0 are therefore solvable for p0 and ,u,,: 

P3 = P3(Q1, CL?, 0, I-b = P4(Ql, cl21 t) 

The substitution of u1 and u1 from equations (3.7) into the equation 

(3.21 after some simple reductions with the aid of (2;2), yields the 

following equations 

D($-Z)=O, or L$_z_~L: 

Hence, there exists a differentiable function @l(~l, q2, t) such that 

p'7 = N+q,, p'li = M'1/J72. On the basis of (3.2) we have 

Ul = Wl /dy1(2), 2‘1 = d/,/dy2'2' 

It follows, therefore, from equation (3.71 that 

a apio [f1- @1(q17 q2’ t)’ = O 
where f, is a differentiable function of the variables t, &, . . . . q$(‘), 

A,, A,. 

hlaking use of the last relations, we can reduce the function F= 
u1q51(3) + v1q52(3J + A, to the form 

F, = & ‘&(qr, qz, t) -t- B, (t, hi, As, ~1, . . . , yJ2)) 

where B, is some differentiable function not containing q51(3). 

In the general case (n > 11, a function F,, which is subject to the 

conditions (2.4) and (2.51, must necessarily be representable in the form 

F,(t, )\I, &, 'pi, . . . , y2(n+2)) = & @n (t, ql, . . . , q2(n-1)) + 

-!- & (t, A,, h2, ~1, . . . , y2("+')) 

In accordance with lemma 1, Yyn+ 2( ‘)(F,,) = 0. Because of the linearity 

of the operator Y"+* (the superscript i has been dropped), we have the 

following relation: 

Y,,+-z (Fv) = Y,,.;., Cd@,,, ,’ dt) I- ‘Ls2 (B,,) 

In consequence of J_emna 1, we also have 

Yr42 (da,! dt) = 0 
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Therefore, Y n+ 2 
(Bn) = 0. But JB /a <( n+*) = 0, and the order of the 

n CL) = operator has been lowered by one: Yn+ 1 0. In entirely analogous 

manner one obtains 

BnV, A,, h, cp,, . . . , pp+q= & CD,,_* (t, q*, . . . , qp--2)) f 

f h-1 (t, 1.1, ho, 91, . . . ,y2@)), ‘r,(B,--1 ) = 0 

Thus, 

F"(t, 4, A,, 'Fl, . . . , q2("+2))= -$ i cDk +- B,(t, i\,, A,. Q]) . . . , Q) = 
k=l 

= $@(C Ql, . . . , q,(“-1)) + B, (t, I.,, I.?, pl, . . . , (~~(2)) Y’p (B,) = 0 

Here CD= a1 + . . . + Q,. 

'lhe function B, must also satisfy the condition (2.5). In accordance 

with lemna 2, the corresponding equations (n = 0), in which 

B, = u,,(t, Xl, h,, cpl, . . . , ‘~~‘1)) yl(*) + v,(l, l.l, h,, yl, . . . , ~$1)) cpJ2) -+ 

-t Ao(t, A,, A*, $3, * * * 9 'Fz(')) 

are obtained in the form: 

ug f :+,I-!- p*a21= 0, co +~+212 f- pz,,- 0 (3.10) - .._ 

8-4” ah, dbzo 
- 

&U) + ; 
1. - + IL2 - =; 
l&+(l) ap2(l) 

0 (3.11) 

'Ihe last set of equations is obtained by equating to zero all the 

terms free of I$~(*) in the equations (3.4) written out for the case n= 0. 

Eliminating u0 

(3.0, 

from (3.8) and v0 from (3.9) with the aid of equations 

we obtain 

a 44 , 
ll& 7- 

a +2 _ 0 

21*1- ,*.., 

&%A - 
I- a’p1 

+Q,g=o,..., 

8th 
a11 - 

+2(l) 
~a,,--.-- =; 

ai+ o 

+2(l) 

al2 j$&a22+$=0 

Pairing off equations of the last two systems and taking into account 
the fact that D f 0, we obtain 

all1 

&p 

=A!!?&=() 

acpy 
(j - 1, 2) 

and, hence, ~1~ = pl(t), p2 = g2(t). 
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The system (3.11) reduces to a single equation 

Al + PA0 f- PA, = (I(t) 

From the condition J u,/J&(~) = J v~/J$,(~), in view of relations 

(3.10), (2.2) and since Df 0, we find that p2 = 0. Ihe systems (3.8), 

(3.9) and (3.11) reduce finally to three equations: 

A 0 + I410 = 9 (t)T uo + Pl% = 0, uo + Pl%2 = 0 

Thus, 

Bl = u,(p1(2) f wp2f2) + 4, = 9(t) - pl (all(pl@) + ~2y9,(~) + b,) = Q(t) - plal 

We next show that /"I = const. From the equation \rc,tB,) = 0 it follows 
that 

B, == $ C (t, I.,, &, cpl, . . . , ya(‘)) + 51 (t) 

where c and (I are some differentiable functions independent of each 

other. But 

p,lql= I& [(A, t- &)t i- In Al 

On the other hand, 

lilql = - - d”, i;.:- \C,dt - \+dt ) 
v 

'Iherefore, the quantity 

!L~~$ [(k, -+ A,) t -f 111 Aj 

must be a total derivative with respect to t. Ihis, however, is possible 

only if pI = const. Thus, 

P,(t, A,, A,, c/II, . . . ,cpp+q = 

= $@(t, 41,. * * 7 VP19 - PlQl + 9 (Q (pl := const) 

is a function of the class {FI of the most general type, and 

'Ihis proves the theorem. 

4. By dropping in the expression for the function F the unessential 
term I/I(~), one may write the following equation, on the basis of what has 

just been proved. 
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Integrating this expression, setting f = hf’, @= In@‘, and exponen- 

tiating the result, we obtain 

!'(t, ‘Fl, . . * , cpp+y = 0’ (t , q1, . . . ) qP1)) exp (- p1 j q&t) 

Such a representation of functions in terms of the fundamental solu- 

tions of the equation (1.1) is found in connection with a theorem due to 

Appel [ 11. 

I express my deep gratitude to Chetaev, and also to the participants 

of the seminar directed by him at the Moscow State lhiversity, for help 

advice and criticism received. 
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