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I. Let the coefficients 7, (t) and q,(t) of the equation

' +gi () + g )z =0 (1.1)

be continuous periodic functions of the real period w. It is known that
1 «

o\ a@Wdt = —0y 4 2) (1.2)
i

where A, and A, are characteristic exponents of solutions of the equation
(1,1). fhey are real numbers.

The equation (1.2) gives an example of a function F of the coeffi-
cients of the equation (l.1), namely, F = 7, which has the following pro-
perties: its mean value over the period is a function of the character-
istic exponents A, and A, whose structure does not depend on g, as a
function of time.

The existence of another similar function with a mean value different
from A, + A, would permit the evaluation of A, and A, by means of a finite
number of standard operations on the coefficients of the equation inde-
pendently of the particular form the latter might have.

One can show, however, that such a function does not exist.

2. We shall make the statement of the problem more precise. Let us
assume that the coefficients q,(t) and 7,(t) are continuous n-times
differentiable functions and such that Al # AZ' Then the independent so-
lutions of the equation (1.1) can be represented in the form (2)
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zi = i (1) € (2.1)

Here, and in what follows, i = 1, 2; gbi(t) is a periodic function of
period .

From the existence and uniqueness theorem for the solutions of equation
(1.1) and of the equations obtainable form (1.1} through n repeated diffe-
rentiations, it follows that the functions ¢, (t) and their derivatives of
order up to n + 2 are continuous.

We introduce the notation

d(“)q,i
CPi(u) — o CPi(O) = @; (* =0,1,..., n)

From the equations, which result from the substitution of each of the
solutions (2.1) into equation (1.1), we obtain

gi = aup1® - aip® - by

¢ W45 w
ag; = — -—AE , A9 = QAI y Ay = —-———-——CPz Z 292 , Qg9 == — ._._...—Ql : M1
b, 0b;
A = Wy — 19, i~ (A — 1) P15 2= 0 0 2.2
P12 (M 2) P12, 0 ® - 2g® (2.2)

From these relations it follows that

R R O O (2.3)

where the b, are continuous and depend on ¢1(x+ 2), ¢2("+ 2),

We shall consider all possible differentiable functions F,, of the in-
dependent* variables t, ¢, ..., ¢2("+ 2)
plicitly appearing variable t:

periodic relative to the ex-

F" (t + W, )\1; )\21 cPl’ LRI ) CP271+2) == Fv(t» )\17 )‘2’ cPl: LR ] <P2(n+2))

We shall subject these functions to the following conditions. (1) The
mean value of F, over the period is a function cv()\l, A,) of the charac-
teristic exponents whose form depends on the form of qSi%t) as a function

* It is assumed that the variable t, entering explicitly in Fv' cannot
be expressed in terms of integrals

t

{6 erwia

(1]

where G is an arbitrary integrable, nonconstant function of the vari-
ables qSi(").
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of t:
1 ¢ <
SR @ R @1 =0, 1) (2.4)
0
(2) The arguments of the function F, can be grouped so that 1in view of
(2.3) for arbitrary ¢,(*) the following identity holds

Folt, My e, @1y o5 ™) =FJ (2, quy - -, g2™) (2.5)
The F,,”- do not depend explicitly on A; and ¢i(x)_

The functions that satisfy conditions (2.4) and (2.5) we include in

the class { F}. They are periodic in t and are such that the integral
(5]

1
=V FlEq@), - g )
0
1s a function of the characteristic exponents whose structure depends
only on the choice of F. The arguments ¢, qi(x of F are independent. The
following theorem holds.

Theorem. If the n-times differentiable periodic functions are not all
identical constants, and are such that A, # A, then for an arbitrary
function F of the class { F} the following identity is valid

(o]
1
TS Fit, q(1), ..., g™ (O] dt = py (M + g) + 12
0
where g, and p are constants independent of A

It follows from the theorem that the characteristic exponents of the
solution of the equation (1.1) cannot be expressed in terms of a finite
relationship between the mean values of the functions of the class { Fi.

Below we derive two lemmas with the aid of which the conditions (2.4)
and (2.5) (that restrict the class of functions F,) are formlated in a
manner convenient for the proof of the theorem.

Lemma 1. In order that the function F,, satisfy the condition (2.4) it
is necessary and sufficient that the following equation be satisfied
identically in the ¢i(’):

. oF oF, (m+2) , OF,
@ =y _ 4 L Loyt v N
Wnie (Fy) = Go; Tl oD )+ (=1 dt”+2< oo | =0 (2.6)

Proof. Without loss of generality we assume that w =27, The functions
¢;'*/ admit expansions into convergent Fourier series:

[on]
o = a,? - }] (ax cos kt = 0,1 sin kt)
k=1
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[ee] . .
V= Sk (— & sin &t -4 5, cos kt)
k=1
. (o) o .
A - >k (0, cos kt -+ 1V sin kt)
k=1
The functional
j = «11:\ F‘l (f, }‘11 ?‘By CPI» e vy ?2(7‘+2)) []t etc.
0

will not depend on the form of the function P if, and only 1if,
aJ atJ aJ

@ = e s =0

2, obk 8(:0

We have
& oF oF or, .
97 ,_LR [6—;33 cos kt -}- aq,’l) (— ke kl) 4+ ™ (q) (— k% cos ki) ~- sz

8a,® Toim )
# o

arF
Y (— ksinkt) - . . .]dt

e
¢ rOF aF
97 == "—1‘S [“a—vsinkt —}‘“—(y @
@4 0o,

abi(t) 2w A
Integrating by parts the appropriate number of times, and taking into
account the periodicity of the function F,, we obtain

2
o 1 G . o ar 1 o
9, j;g‘§ Yoie (F.)cosktdt =0, Fache TS W, (F.)sinktdt = 0

Furthermore,

_ 1 Lo _

a(z) ;S (Fv)dt =
o

This establishes the lemma.

We note that the content of the proved lemma does not coincide with
the content of a very similar variational problem. Therefore the validity
of this lemma is not a consequence of any fact known in the calculus of

variation.
Consequence. It is not difficult to establish that equation (2.6) 1is
satisfied by any function F, representable in the form

d
F\) (t: Dys v vy f?g(n—{ﬁ‘:}) = ”f.l'-t-f(t, [ TTIN (pz(ﬂ-{—l))

where f is an arbitrary differentiable function periodic in t.

Lemma 2. let r, be the rank of the functional determinant
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oF, oF, OF,
(% Oy 6qa("+2)
0q g, dq,
.111 == 65?1 d(pz tt 6?2(717'2)
9g:.™ g™ dgs™
8:91 6(92 ' ang("+2)

The function F,, will satisfy condition (2.5) if and only if r < 2(n + 1)
for arbitrary ¢;'*

The validity of the lemma follows from a known theorem in analysis

[31.

We note that this lemma does not have a local character by the very
nature of the condition (2.5) which must hold everywhere.

3. We now proceed with the proof of the theorem.

We shall first show that the function F,, which is subject to condition
(2.4) must be representable in the form

ith Fy = upo,™2 4 0,0, + 4, (3.1)
wit
du,, v, Ou,, dv,, 04, 0 (3.2)
PIRCESY = PRSI P <Pi(n+2) — a%(nqtz) - aq,i(nJrz) - .

Indeed, since the function F, contains by hypothesis only derivatives

of order not higher than n + 2, the coefficients of the higher order de-
rivatives in the operator (2.6) must vanish.

For the coefficients of ¢i2("+ 2) we have

9°F [ i) = 0 (7 =1, 2) (3.3)

Whence,
F, = un(’ol("+2) -+ vn¢2(n+2) 4+ A4
wherein the second condition (3.2) is satisfied.

The terms containing derivatives of order 2(n + 2) — 1 are generated
by the last two terms of the operator (2.4):

(__ a1 Jn1)

aemTL (&p ("‘*‘1))
gt u oo, 04

— D o (mt2) (nt2) . T
2in (a <nT1) 71 +a <+> "D o+ P ﬂ>>

=(—1)""
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o dE) oz

(— e b
=D ditl (\\a%(“ o P )
Here,
u, (i=1)
Z; =
{ v, (i=2)
The coefficient of the first power of the function 951(2'”' 3) is
du,, . dz; 0

aq)i('ﬂ-f’l) aq,l(ﬂ-H) -
Setting i = 2 in this expression we obtain equation (3.2).

For the sake of explicitness let us restrict ourselves to the case

when n = 1. It is the simplest case but contains all the characteristics
of the general one.

We note first of all that the determinant

D=|% @] _ A1 et ® @

a9y dgg 22. Zo,

is bounded and different from zero because of the linear independence and
continuity of the solutions of equation (1.1).

We require that the functions F,, also satisfy the condition (2.5).
According to lemma 2, with n = 1, we must have rn & 4. Hence one can find
at least one set of values ftgr Hys +ees py, not all zero, such that

oF

Y a,h(l) 5(12(1)
My 0—%(—“ +

4 )
4 P a:;j) + g 70, + 12 50,0 =0 (=012 (3.4)
These equations must be satisfied identically in ¢’i(j)' We note that
tg # 0, for otherwise there would exist a linear relation between the
rows of the matrix M. But this is impossible since the fourth-order de-
terminant of the matrix M, standing in the lower right-hand corner, is
different from zero:

o
atpi<”

@11 d13 0 0
9 {q, g2, (h(l), f]z(l)) ag a0 0

2 (971(2), ?2(2)1 cPl(s), @2(3)) . . a1 Az

Thus, without loss of generality, p, = L

Taking into account the linearity of the functions F , Gpr oves qz(l)
relative to the ¢, 3) , and making use of the condition D # 0, we can easily
prove by differentiation equation: (3.4) with respect to ¢i(3) that
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pg . Oy .0

5<Pi(3) aqi(-’l)

hy = WP ® - g9 -1y, t2 = P11 ® - Rage® - Lo’

where Fip and p1'~ are quantities independent of <;Si(3).

1531

Substituting the values p, and p, into (3.4), emquating to zero the
coefficients of ¢i(3) and taking into account the equations (2.3) and

(3.1), we obtain

Guy 4 0o o Dta Ay 27
a(Pl 3 6(Pl 4 8‘?1 [ § 6<p i ot2l an
Oul 1 61111 3([21 7] y 6(]2
PO P T T ap® P @
dvy days days 9q1 9qz =0
aCP1 + P-s 8<P1 + (J‘4 a(P], + [-"12 a(Pl + P‘22 acpl _
0vy dayy Oasg oq1 dq,
EE i L —2_ =0
0@2(2) + ‘1’3 6@2(2) T a aq)z(z) + “12 6@2(2) + “22 8q>2(2)
Uy + 3011 + e@s = 0, V1 ey, ke = 0

(3.5)

(3.6)

(3.7)

The system of equations (3.7) is obtained directlv as a statement of
the fact that the elements of the last two columns of the matrix M are

linearly independent.

The group of equations, obtainable from (3.4) by equating to zero the
sum of the terms independent of (bi(B) , has not been written out. Elimin-
ating u, from the system (3.5), and v, from the system (3.6), we obtain

with the aid of (3.7) the next set of equations

N

du au dq aq
—01155'—‘121 aT,:‘ + (Lua—(pll*-f- }121?&2 =0
Ovs Op4 oq 09z _
— 8y T B T 99, Tt Opy(® 0
Opg dpq aq, 0qs
-—_a —— ——— —_— —_—
12 3691 22 a(Pl + 12 3@1 + 22 aCPl 0
Ay By 9g1 8qy
— Qyp——Fs — a + 1 Loy —me == ()
12 8(92(2) 22 0@2(2) ] I 12 8(9212) + ( 22 692(2)

From this follows the existence of two identities in ¢, ..., ¢2(2):

1
Xi("ﬁ’ Hyr 910 @y, t) = 0, XZ(F'B' Ky, 94, 95, t) = 0,
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Furthermore, for arbitrary finite q; and t,

0(Xy, X5)
0 (13, Pa) D=0

The equations X; = 0 are therefore solvable for u; and p,:
ts = th3 (91 92, 0), te = ta (g1, G20 1)

The substitution of u; and v, from equations (3.7) into the equation
(3.2) after some simple reductions with the aid of (2.2), yields the
following equations

Ous 6H4> — 0. or Jw _ owm
(a‘h. o - 0gs - dq1

Hence, there exists a differentiable function fbl(ql, 9y, t) such that
pi = 0®,/dq,, py=3® /dq,. On the basis of (3.2) we have

Uy = ‘9f1/a<P1(2), vy =0f/ 0@2(2)
It follows, therefore, from equation (3.7) that
Ié]
W[il_ml (91 g2 D=0

where f, is a differentiable function of the variables t, ¢, ..., qﬁz(z),
A A,

Making use of the last relations, we can reduce the function F =
u1¢1(3) + v1¢2(3) + A1 to the form

d
F, = 7‘131 (g1, G2, 1) -+ By (t, My Ry @1,y 00, 30@)
)

where B, is some differentiable function not containing ¢1(3 .

In the general case (n > 1), a function F,, which is subject to the
conditions (2.4) and (2.,5), must necessarily be representable in the form

d
FV (t, }\1, )\2, P1y o0 v CP2(n+2)) = W(Dn (t, 1y -0y qg(n_l)) “}“
-+ B, (ta M, R, P15 - - - ,CPz("H))

In accordance with lemma 1, L S 2( i)(FV) = 0. Because of the linearity
of the operator ¥, , (the superscript i has been dropped), we have the
following relation:

\Fn—{—-‘: (Fv) = \Fu-{-z (d(Dn ,/ dt) "{' ‘Fn-f-z (Bn)
In consequence of Lemma 1, we also have

¥, 1o (dD,,/dt) =0
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Therefore, ¥, Z(B ) = 0. But 9B /6%(""2 0, and the order of the
operator has been lowered by one: ¥, (Bn) = 0. In entirely analogous
manner one obtains

+1

B‘n (tv )‘ly )‘2’ ?17 AR | 592(""'1)): %CDH—I (t’ ql! LR | %‘"‘2’) '_"'
+ Bn——l (t’ )‘1» )\‘.’5 <Fl: LEE ] CPZ(n))» ‘Fn (Bn——l ) = 0

Thus,
n
Fv(ty )‘17 )‘21 (Fl’ LR ’?2(1!4—2)) = 'Edt— 2 q)'n’ %‘ Bl(ty }\la )‘2* ({‘lv LR ’?2(2)) ==
k=1
d N
= Tdt—(D(t’ q1s - - Q2(n—1)) + Bl (t: hy, )“_’y <?lv ... acpﬁ(e)) ‘FZ (Bl) = 0

Here ® = <I>1 + oeee + CI)n.

The function B, must also satisfy the condition (2.5). In accordance
with lemma 2, the corresponding equations (n = 0), in which

Bl. = u() (tv )‘17 )\21 cPly ey @2(1))(1:1(2) _:_ vo (t, )‘17 )‘2’ ?l: ey '1';2(1))‘?2(2) na
+ Ao (ti )\17 )\21 (Ply ey cP2(l))
are obtained in the form:

Buo Dan aanl Guo ' dau ) (7a21
—0 = — o o —
a?l U 691 i u‘2 aq)l =" 01 v ey 092(1) . aq) (1) i : 2 a(?z(l) O (3'8)
3v0 aalz 0a22 _ dv(, . 3(112 o, allgz o
— + by w5 0(91 + 2 A O, e eey 8@2(1) - 692(1) i “'26?2"” - (3.9)
Ug -+ 11811 + ey = 0, Vp -+ 1810 - ey = 0 (3.10)
94, A Obyy . Obyy 94, by, Obs,
dor 1 G T 20" =0,..., 5o (1,—1-1-16‘2(1) - g,_a? 5 == 0 (3.11)

The last set of equations is obtained by equating to zero all the
terms free of ¢.'?) in the equations (3.4) written out for the case n=0.
Eliminating u, from (3.8) and v, from (3.9) with the aid of equations
(3.1), we obtain

O dpe O Oz
Aq1 —= = oy — = O e ey a —a o= O
19p, T "2 g ' N A P
a}’-l ap.z N 8p1 a}"z —_—
12 '5;; + ase Froa 0,..., Q12 aq,z(l) 2 atpzu) =0

Pairing off equations of the last two systems and takines into account
the fact that D £ 0, we obtain

ap.l _ 3}1,2 s
a?i(j) - aq,i(.‘i) =0 (f=12

and, hence, p, = p,(t), p, = p,(¢).
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The system (3.11) reduces to a single equation
Ay + pabo 4 tabae = § (2)

From the condition 3u0/8¢2(1) =d vo/ﬁ(/)l(l), in view of relations
(3.10), (2.2) and since D £ 0, we find that #, = 0. The systems (3.8),
(3.9) and (3.11) reduce finally to three equations:

Ao + P‘lblo = 4)(t)1 Ug + M1y = 0, 2 + e = 0
Thus,

By =ugp;® + upe® + Ay = P () — 21 (@101 + 109 @ + byy) = ¢ (2) — 10,

We next show that u, = const. From the equation ¥, (Bl) = 0 1t follows
that

d .
By =2 C(t, 1y oy B1r e 0a®) G (8)

where ¢ and ¢, are some differentiable functions independent of each
other. But

d
g1 =ty [\ 4 Rg) 2 - In A]
On the other hand,

- d /j» | :
M = — g7 /\s 4 Scldt — \<Pdt )
Therefore, the quantity
d . - -
gy [(hy = Rg)t -+ In A]
must be a total derivative with respect to t. This, however, is possible

only 1f ft, = const. Thus,

F, (t) Ay, Ry, Pry - - @2("+2)) =
d
= DL, qrp- ey gD — 1g; + (1) (1 — const)

is a function of the class { F} of the most general type, and

an 2 21

L\ . 1 on . 1 .

T:;,\thzﬁq) 0—%8(11&—'—‘2—;Sq’(t)dt:“'l()&‘*‘)\z)“i‘(f-
0 0 S

This proves the theorem.

4. By dropping in the expression for the function F the unessential
term (t), one may write the following equation, on the basis of what has
Jjust been proved.



The solutions of a second order linear differential equation 1535

d d
/ey @) = (2, gy, g™ Y) gy

Integrating this expression, setting f = Inf’, ®= In®’, and exponen-
tiating the result, we obtain

1y @) =D (L, gy, ..., g™ D) exp (— MS q,dt)

Such a representation of functions in terms of the fundamental solu-
tions of the equation (1.1) is found in connection with a theorem due to

Appel [11.

I express my deep gratitude to Chetaev, and also to the participants
of the seminar directed by him at the Moscow State University, for help
advice and criticlism received.
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